
J Math Chem (2014) 52:966–976
DOI 10.1007/s10910-013-0303-z

Electron-pair shell density approximation applied
to inner and outer densities of atoms

Toshikatsu Koga

Received: 2 December 2013 / Accepted: 12 December 2013 / Published online: 21 December 2013
© Springer Science+Business Media New York 2013

Abstract The shell density approximation to the electron-pair radial density of atoms
is applied to the inner D<(r) and outer D>(r) densities, which are two components
of the single-electron density D(r). The inner and outer densities are found to be
expressed by product sums of shell densities and shell distributions or their comple-
ments. The expressions clarify physical meaning of the two densities and give examples
for constructing two-electron properties from single-electron properties. Examination
of the 53 atoms He through Xe shows that the quantum similarity indices between
the original and approximate densities, bounded by 0 (complete dissimilarity) and 1
(complete similarity), are never smaller than 0.99998 and 0.99987 for the inner and
outer densities, respectively. The local nature of the shell density and the monotoni-
cally increasing property of the shell distribution are used to derive simple shellwise
lower and upper bounds to D<(r) and D>(r) in terms of D(r) and the numbers of
shell electrons. Numerical tests of the bounds demonstrate their utility.

Keywords Inner and outer densities · Electron-pair densities · Shell densities ·
Shell distributions

1 Introduction

When a normalized N -electron (N ≥ 2) wave function �(x1, . . . , xN ) is given, the
electron-pair radial density function (see, e.g., [1–7]) D(2)(r1, r2) is defined by
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D(2)(r1, r2) = N (N − 1)

2
r2

1 r2
2

∫
ds1ds2d�1d�2dx3 . . . dxN |�(x1, . . . , xN )|2,

(1)

where xi = (ri , si ) is the combined position-spin coordinate of the electron i, (ri ,�i )

with �i = (θi , φi ) is the polar coordinate of the position vector ri , and
∫

d�i stands

for the angular integration
∫ 2π

0 dφi
∫ π

0 dθi sinθi . The function D(2)(r1, r2) represents
the probability density that among N electrons, one electron is located at a radius r1
and the other electron at a radius r2 simultaneously. It is normalized in this work to
the number N (N − 1)/2 of electron pairs. The familiar single-electron radial density
(see, e.g., [8–11]) D(r) is straightforwardly obtained from D(2)(r1, r2) by

D(r) = 2

N − 1

∞∫

0

dr2 D(2)(r, r2). (2)

The radial density D(r), normalized to the number N of electrons in this work, implies
the probability density of any single electron among N electrons being on the sphere
with a radius r . The physical significance of the densities D(2)(r1, r2) and D(r) as
well as their connection to experimental measurements are described in [7].

If any two electrons are considered simultaneously, the radial density D(r) is rigor-
ously partitioned [12] into two component functions, the inner D<(r) and outer D>(r)

density functions:

D(r) = D<(r) + D>(r), (3a)

D<(r) = 2

N − 1

∞∫

r

dr2 D(2)(r, r2), (3b)

D>(r) = 2

N − 1

r∫

0

dr2 D(2)(r, r2). (3c)

The inner density D<(r) represents the probability density that one electron moves
with a radius r which is smaller than the radius of the other electron, and the outer
density D>(r) is the probability density for the opposite situation. Both the inner and
outer densities are normalized to N/2. The partitioning of D(r) into D<(r) and D>(r)

was shown [13] to minimize the average variance of two component densities when a
generalized partitioning of D(r) is considered. The short- and long-range behavior of
D<(r) and D>(r) was clarified in [12,14] and an examination of D<(r) and D>(r)

for singly-excited states of the He atom was reported in [15].
Based on subshell and shell analysis of the electron-pair radial density D(2)(r1, r2)

of atoms, it was recently found [16] that D(2)(r1, r2) is well expressed by a set of shell
densities dn(r) in the Hartree-Fock theory, where n denotes the principal quantum
number. In the present paper, we apply the shell density approximation of D(2)(r1, r2)

to the inner D<(r) and outer D>(r) density functions. The resultant expressions clar-
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ify physical meaning of the two densities that the inner and outer densities are product
sums of shell densities dn(r) and shell distributions f <

n (r)or their complements f >
n (r).

For the 53 atoms He through Xe in their ground states [17], numerical examinations
show that the quantum similarity indices between the original and approximate den-
sities are never smaller than 0.99998 and 0.99987 for the inner and outer densities,
respectively, where the index is bounded by 0 (complete dissimilarity) and 1 (complete
similarity). The result implies a quantitatively acceptable construction of two-electron
properties from single-electron properties. The local nature [16,18] of the shell den-
sity dn(r) and the monotonically increasing property of the shell distribution f <

n (r)

are used to derive simple shellwise lower and upper bounds to D<(r) and D>(r) in
terms of D(r) and the numbers Nn of shell electrons. Numerical tests of the bounds
demonstrate their utility. All the numerical results in this work have been obtained
by numerical Hartree-Fock calculations based on a modified version of the MCHF88
program [19]. Atomic units are used throughout.

2 Shell density approximation of inner and outer densities

The shell density approximation of the electron-pair density D(2)(r1, r2) reads [16]

D(2)(r1, r2) ∼= 1

2

[
D(r1)D(r2) −

∑
n

Nndn(r1)dn(r2)

]
, (4a)

where

D(r) =
∑

n

Nndn(r), (4b)

dn(r) is the electron shell density (normalized to unity), and Nn is the number of
electrons of the shell n. The shell density is exemplified in Fig. 1a for the four shells
of the Kr atom. Equations (4a) and (4b) are consistent with the relation (2), since∑

n Nn = N . We note that Eq. (4a) is correct (not approximate) for the ground-state
He atom in the Hartree-Fock approximation, since the atom has only one occupied
shell.

Inserting Eq. (4a) into Eqs. (3b) and (3c), we find

D<(r) ∼= 1

N − 1

[
D(r)F>(r) −

∑
n

Nndn(r) f >
n (r)

]
,

= 1

N − 1

∑
n

Nn[D(r) − dn(r)] f >
n (r), (5a)

D>(r) ∼= 1

N − 1

[
D(r)F<(r) −

∑
n

Nndn(r) f <
n (r)

]
,

= 1

N − 1

∑
n

Nn[D(r) − dn(r)] f <
n (r), (5b)
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Fig. 1 a The shell density dn(r) and b the shell distribution f <
n (r) exemplified for the four shells of the

Kr atom

for the inner and outer densities, where

f <
n (r) =

r∫

0

dr ′ dn(r ′), (6a)

f >
n (r) =

∞∫

r

dr ′ dn(r ′), (6b)

are the cumulative distribution function of the n shell electron and its complementary
function and

F<(r) =
r∫

0

dr ′ D(r ′) =
∑

n

Nn f <
n (r), (6c)

F>(r) =
∞∫

r

dr ′ D(r ′) =
∑

n

Nn f >
n (r), (6d)
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are the cumulative distribution function of all electrons and its complementary func-
tion. Since D(r) and dn(r) are nonnegative, the distributions F<(r) and fn < (r) are
monotonically increasing functions from 0 to N and from 0 to 1, respectively, while
the complements F>(r) and f >

n (r) are monotonically decreasing functions from N
to 0 and from 1 to 0, respectively, when r varies from 0 to ∞. Examples of the shell
distribution f <

n (r) are given in Fig. 1b for the four shells of the Kr atom. The above
distributions and complements satisfy sum rules

f <
n (r) + f >

n (r) = 1, (7a)

F<(r) + F>(r) = N , (7b)

for any value of r . The sum rules guarantee that Eqs. (5a) and (5b) satisfy Eq. (3a). It is
also confirmed that the right-hand sides of Eqs. (5a) and (5b) are correctly normalized
to N/2, because

∞∫

0

dr dn(r) f <
n (r) =

∞∫

0

dr dn(r) f >
n (r) = 1

2
, (8a)

∞∫

0

dr [dn(r) f <
n′ (r) + dn′(r) f <

n (r)] =
∞∫

0

dr [dn(r) f >
n′ (r) + dn′(r) f >

n (r)] = 1,

(8b)
∞∫

0

dr D(r)F<(r) =
∞∫

0

dr D(r)F>(r) = N 2

2
. (8c)

The above application of the shell density approximation to the inner and outer
densities gives physical interpretation of the two densities as follows: The first lines of
Eqs. (5a) and (5b) show that if the total density and the total distribution are expanded
by their shell contributions (see Eqs. (4b), (6c), and (6d)), the inner and outer densities
are weighted product sums of shell densities and shell distributions, where the weight
factors depend on the numbers of electrons in two relevant shells. In the second line of
Eq. (5a), the inner density D<(r) is clarified to originate from a product of the electron
density D(r) − dn(r) of N − 1 electrons with a radius r , arising from the removal of
an electron in the shell n, and the complementary cumulative distribution f >

n (r) of the
removed electron, which has a radius larger than r of the N −1 electrons. Analogously,
the second line of Eq. (5b) shows that the outer density D>(r) comes from a product
of the electron density D(r)−dn(r) of N −1 electrons and the cumulative distribution
f <
n (r) of an electron removed from the shell n. The removed electron has a radius

smaller than r of the N − 1 electrons.
We next examine the accuracy of Eqs. (5a) and (5b) for the 53 atoms He through Xe

in their ground states [17]. When the original and approximate densities are plotted
and compared for the inner and outer densities of these atoms, we have found that
the two curves are so similar that they are apparently superimposed and it is hard to
distinguish the original and approximate densities by using figures. An example is
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Fig. 2 The original and the shell density approximated inner and outer densities exemplified for the Kr
atom

given in Fig. 2 for the Kr atom. To see the difference in a distinct way and to check the
similarity in a quantitative manner, we then use the quantum similarity index [20,21]
S[ f, g] of two nonnegative functions f (r) and g(r) defined by

S[ f, g] =
⎛
⎝

∞∫

0

dr f (r)g(r)

⎞
⎠

/⎡
⎣

⎛
⎝

∞∫

0

dr f 2(r)

⎞
⎠

⎛
⎝

∞∫

0

dr g2(r)

⎞
⎠

⎤
⎦

1/2

. (9)

The index is bounded as 0 ≤ S[ f, g] ≤ 1, where 0 means the complete dissimilarity
while 1 means complete similarity. The calculated indices for the 53 atoms He through
Xe are plotted in Fig. 3 as a function of atomic number Z . The indices for the inner
density are never smaller than 0.99998 and are larger than 0.99999 for all atoms with
Z > 5; the minimal value is 0.999984 for Be and the maximal value is 1 for He.
The presence of equally occupied two shells (K and L) appears to be the origin of the
largest dissimilarity for the Be atom. On the other hand, the similarity indices for the
outer density are slightly worse. Nonetheless, they are never smaller than 0.99987 and
larger than 0.99998 for all atoms with Z > 6; the minimal value is 0.999878 for Be
and the maximal value is 1 for He. These values demonstrate that the shell density
approximations to the inner and outer densities are highly accurate and quantitatively
acceptable.

3 Shellwise behavior of inner and outer densities

In the literature [16,18,22–26], it was reported that atomic shell densities are quite
dissimilar and well localized depending on the radial value r . When we consider a
radial value r which lies in the n shell region bounded by two radii r (min)

n and r (max)
n ,

we neglect the density contributions from all shells other than the n shell and have
approximate relations
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Fig. 3 Similarity indices between the original and the shell density approximated inner and outer densities
as a function of atomic number Z

D(r) ∼= Nndn(r), (10a)

F<(r) ∼= N<
n + Nn f <

n (r), (10b)

F>(r) ∼= N>
n + Nn f >

n (r), (10c)

where

N<
n =

n−1∑
k=1

Nk, N>
n =

nmax∑
k=n+1

Nk, (11)

are the numbers of electrons inside and outside the n shell, respectively, and nmax stands
for the principal quantum number of the outermost shell. Naturally, these numbers
satisfy a relation N<

n + Nn + N>
n = N . Combining Eqs. (10a) – (10c) with Eqs. (5a)

and (5b), we find for the n shell region that

D<(r) ∼= (Nn − 1) f >
n (r) + N>

n

N − 1
D(r), (12a)

D>(r) ∼= (Nn − 1) f <
n (r) + N<

n

N − 1
D(r), (12b)

whose sum fulfills the correct relation D<(r) + D>(r) = D(r) because of Eq. (7a).
If we are reminded of the fact that the distribution f <

n (r) is a monotonically increas-
ing function, whereas the complement f >

n (r) is a monotonically decreasing function
when r increases in the n shell region, Eqs. (12a) and (12b) show that the relative con-
tributions D<(r)/D(r) and D>(r)/D(r) of the inner and outer densities are monoton-
ically decreasing and increasing, respectively, in that region. Successively connecting
such monotonicity for all occupied shells, the overall monotonicity is expected for
the relative contributions in the entire region of r . The anticipation is confirmed to
be true for all the atoms, as exemplified in Fig. 4 for the Kr atom where the relevant
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Fig. 4 The relative contributions D<(r)/D(r) and D>(r)/D(r) of the inner and outer densities for the Kr
atom calculated by the original electron-pair density. The three vertical lines separate the four shell regions
in the atom

data have been taken from the original electron-pair density [12]. Equations (12a) and
(12b) also tell us that the curves of the inner D<(r) and outer D>(r) density func-
tions would cross at a single point r (c) in a particular n shell region where a relation
(Nn − 1) f >

n (r (c)) + N>
n = (Nn − 1) f <

n (r (c)) + N<
n is satisfied. For the Kr atom,

Figs. 2 and 4 show that the two density curves indeed have a single cross point in the
M shell region, where f <

n=3(r
(c)) = 1 − f >

n=3(r
(c)) ∼= 15/34. Examples of the single

crossing nature of the inner and outer densities are also found in figures of [12] for
other atoms.

Furthermore, since the functions f <
n (r) and f >

n (r) are bounded by 0 and 1, we
obtain from Eqs. (12a) and (12b) lower and upper bounds to the inner and outer
densities in the n shell region (i.e. r (min)

n < r < r (max)
n ) as

N>
n

N − 1
D(r) ≤ D<(r) ≤ Nn − 1 + N>

n

N − 1
D(r), (13a)

N<
n

N − 1
D(r) ≤ D>(r) ≤ Nn − 1 + N<

n

N − 1
D(r). (13b)

Note that two cross sums of the four bounds (i.e., the lower bound in an inequality
plus the upper bound in another inequality) in Eqs. (13a) and (13b) reduce to D(r)

as is the sum of D<(r) and D>(r). A particular case of these inequalities for n = 1
(K shell) reads

N − 2

N − 1
D(r) ≤ D<(r) ≤ D(r), (14a)

0 ≤ D>(r) ≤ 1

N − 1
D(r), (14b)
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Table 1 The numerical values of the shellwise lower and upper bounds to the relative contributions
D<(r)/D(r) and D>(r)/D(r) for the Kr atom

Shell N<
n Nn N>

n r (b)
n D<(r)/D(r) D>(r)/D(r)

Lower
bound

Value
at r (b)

n

Upper
bound

Lower
bound

Value
at r (b)

n

Upper
bound

0 – 1 – – 0 –

K 0 2 34 – 34/35 – 1 0 – 1/35

(n = 1) (= 0.971) (= 0.029)

0.06 – 0.952 – – 0.048 –

L 2 8 26 – 26/35 – 33/35 2/35 – 9/35

(n = 2) (= 0.743) (= 0.943) (= 0.057) (= 0.257)

0.26 – 0.707 – – 0.293 –

M 10 18 8 – 8/35 – 5/7 2/7 – 27/35

(n = 3) (= 0.229) (= 0.714) (= 0.286) (= 0.771)

1.07 – 0.209 – – 0.791 –

N 28 8 0 – 0 – 1/5 4/5 – 1

(n = 4) (= 0.200) (= 0.800)

∞ – 0 – – 1 –

since N<
1 = 0, N1 = 2, and N>

1 = N − 2. The relations do not contradict with the
short-range behavior of the inner and outer densities reported in the literature [12,14]
that D<(r) = [1 + O(r3)]D(r) and D>(r) = [0 + O(r3)]D(r). Another particular
case of Eqs. (13a) and (13b) for n = nmax (outermost shell) is

0 ≤ D<(r) ≤ Nnmax − 1

N − 1
D(r), (15a)

N − Nnmax

N − 1
D(r) ≤ D>(r) ≤ D(r), (15b)

since N<
nmax

= N − N nmax and N>
nmax

= 0. The inequalities are consistent with the
known long-range behavior [12,14] that D<(r) → 0 and D>(r) → D(r) when
r → ∞.

To check the utility of the shellwise bounds to the inner and outer densities, we
have performed numerical tests for various atoms. We first separated radial regions of
occupied shells in an atom by defining boundary radii r (b)

n , at which two neighboring n
and n+1 shells have equal density contributions Nndn(r (b)

n ) = Nn+1dn+1(r
(b)
n ). In the

case of the Kr atom, for example, the values of r (b)
n for n = 1, 2, 3 are 0.06, 0.26, 1.07,

respectively, which are illustrated in Fig. 4. Note that r (max)
n < r (b)

n < r (min)
n+1 by the

definition. We then calculated the relative contributions D<(r)/D(r) and D>(r)/D(r)

at r (b)
n from the original densities, and the values were compared with the coefficients

of D(r) appearing in the upper and lower bounds in Eqs. (13a) and (13b). The results
have shown both the lower and upper bounds work in a satisfactory manner. A detailed
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numerical example is given in Table 1 for the Kr atom. We find the shellwise lower and
upper bounds are well bounded by the relative contributions at two neighboring values
of r (b)

n . A minor exception is the upper bound 5/7 for D<(r)/D(r) (or the lower bound
2/7 for D>(r)/D(r)) of the M shell, which is slightly larger than 0.707 (or slightly
smaller than 0.293) obtained from the original densities at r (b)

n=2. The nontrivial overlap
of the L and M shell densities, as observed in Fig. 1a, seems to be the origin of these
small discrepancies. Analogous small inversions were found for the M shell of the
other fourth period atoms and for the M and N shells of the fifth period atoms, but
were not found for the second and third period atoms. Though we encounter cases
where the shell density approximation is not highly quantitative, Eqs. (13a) and (13b)
are demonstrated to be very useful since we can predict the relative contributions of the
inner and outer densities only from the knowledge of the numbers of shell electrons.

4 Summary

We have applied the shell density approximation of D(2)(r1, r2) to the inner D<(r)

and outer D>(r) density functions. The resultant expressions clarify physical meaning
of the two densities that the inner and outer densities originate from products of shell
densities dn(r) and shell distributions f <

n (r) or their complements f >
n (r). Examina-

tions of the quantum similarity indices between the original and approximate densities
have shown high accuracy of the approximation for the 53 atoms He through Xe. The
local nature of the shell density dn(r) and the monotonically increasing property of
the shell distribution f <

n (r) have been used to derive simple shellwise lower and upper
bounds to D<(r) and D>(r) in terms of D(r) and the numbers Nn of shell electrons.
Numerical tests of the bounds have demonstrated their utility.
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